Partition group plots
evalplot.grps.Rd
Plot occurrence partition groups over an environmental predictor raster.
Usage
evalplot.grps(
e = NULL,
envs,
pts = NULL,
pts.grp = NULL,
ref.data = "occs",
pts.size = 1.5,
return.tbl = FALSE
)
Arguments
- e
ENMevaluation object
- envs
SpatRaster: environmental predictor variable used to build the models in "e"
- pts
matrix / data frame: coordinates for occurrence or background data
- pts.grp
numeric vector: partition groups corresponding to data in "pts"
- ref.data
character: plot occurrences ("occs") or background ("bg"), with default "occs"
- pts.size
numeric: custom point size for ggplot
- return.tbl
boolean: if TRUE, return the data frames used to make the ggplot instead of the plot itself
Details
This function serves as a quick way to visualize occurrence or background partitions over the extent of an environmental predictor raster. It can be run with an existing ENMevaluation object, or alternatively with occurrence or background coordinates and the corresponding partitions.
Examples
if (FALSE) { # \dontrun{
library(terra)
library(ENMeval)
occs <- read.csv(file.path(system.file(package="predicts"),
"/ex/bradypus.csv"))[,2:3]
envs <- rast(list.files(path=paste(system.file(package="predicts"),
"/ex", sep=""), pattern="tif$", full.names=TRUE))
bg <- as.data.frame(predicts::backgroundSample(envs, n = 10000))
names(bg) <- names(occs)
parts <- get.block(occs, bg, orientation = "lat_lon")
# now, plot the partition groups for occurrence and background points
evalplot.grps(envs = envs, pts = occs, pts.grp = parts$occs.grp)
evalplot.grps(envs = envs, pts = bg, pts.grp = parts$bg.grp)
# you can also plot with an ENMevaluation object
ps <- list(orientation = "lat_lon")
e <- ENMevaluate(occs, envs, bg,
tune.args = list(fc = c("L","LQ"), rm = 1:3),
partitions = "block", partition.settings = ps,
algorithm = "maxnet", categoricals = "biome",
parallel = TRUE)
evalplot.grps(e = e, envs = envs, ref.data = "occs")
evalplot.grps(e = e, envs = envs, ref.data = "bg")
} # }