ENMevaluation statistics plot
evalplot.stats.Rd
Plot evaluation statistics over tuning parameter ranges to visualize differences in performance
Usage
evalplot.stats(
e,
stats,
x.var,
color.var,
dodge = NULL,
error.bars = TRUE,
facet.labels = NULL,
metric.levels = NULL,
return.tbl = FALSE
)
Arguments
- e
ENMevaluation object
- stats
character vector: names of statistics from results table to be plotted; if more than one statistic is specified, the plot will be faceted
- x.var
character: variable to be plotted on x-axis
- color.var
character: variable used to assign symbology colors
- dodge
numeric: dodge width for points and lines; this improves visibility when there is high overlap (optional)
- error.bars
boolean: if TRUE, plot error bars
- facet.labels
character vector: custom names for the metric facets
- metric.levels
character vector: custom factor levels for metrics; this controls the order that metric statistics are plotted
- return.tbl
boolean: if TRUE, return the data frames of results used to make the ggplot instead of the plot itself
Details
In this plot, the x-axis represents a tuning parameter range, while the y-axis represents the average of a statistic over all partitions. Different colors represent the categories or values of another tuning parameter. Error bars represent the standard deviation of a statistic around the mean. Currently, this function can only plot two tuning parameters at a time.
Examples
if (FALSE) { # \dontrun{
# first, let's tune some models
occs <- read.csv(file.path(system.file(package="predicts"),
"/ex/bradypus.csv"))[,2:3]
envs <- rast(list.files(path=paste(system.file(package="predicts"),
"/ex", sep=""), pattern="tif$", full.names=TRUE))
bg <- as.data.frame(predicts::backgroundSample(envs, n = 10000))
names(bg) <- names(occs)
ps <- list(orientation = "lat_lat")
e <- ENMevaluate(occs, envs, bg,
tune.args = list(fc = c("L","LQ","LQH"), rm = 1:5),
partitions = "block", partition.settings = ps,
algorithm = "maxnet", categoricals = "biome",
parallel = TRUE)
evalplot.stats(e, c("cbi.val", "or.mtp"), x.var = "rm", color.var = "fc",
error.bars = FALSE)
} # }